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ABSTRACT The paradigm of online medical prediagnosis has emerged to ease the shortage of health
professionals in rural areas. It can provide a 24-hour online health care service and guide rural residents’
medical treatment. However, the development of online medical prediagnosis system still faces many
challenges, involving the leakage and overuse of medical information. In this paper, we utilize the logistic
regression to design a privacy-preserving medical prediagnosis scheme for the cloud environment, named
POMP, which provides a health care service for users without violating their privacy. It is characterized by
employing homomorphic encryption techniques to achieve a privacy-preserving prediagnosis process over
the encrypted data. The proposed POMP scheme also adopts a preprocessing technique and Bloom filter to
reduce the computational cost in the prediagnosing process. Through extensive analyses, we demonstrate that
the proposed POMP scheme can resist various security threats and protect the privacy successfully. In order
to evaluate the performance, we also implemented the POMP scheme and measured the running time on the
smartphone and computer. The experimental result shows POMP’s efficiency in terms of the computational
and communication burden.

INDEX TERMS Homomorphic encryption, logistic regression, online medical prediagnosis, privacy
preservation.

I. INTRODUCTION
International labour organization (ILO) [1], in 2015, indi-
cated the considerable difference in the distribution of health-
care resources between rural and urban areas worldwide,
i.e., 56 per cent of people living in rural areas do not have
access to the essential healthcare service—more than double
the figure in urban areas where only 22 per cent are not cov-
ered. This healthcare inequity was due to the severe shortfall
of health workers in rural areas, which has been a block in
the way of achieving the series of public health priorities,
such as reducing child and maternal mortality, increasing
vaccine coverage, and battling HIV/AIDS [2]. Therefore,
how to enhance the healthcare quality in rural areas has been
a critical issue confronting all governments in the world.

Recently, the paradigm of online medical prediagnosis
[3]–[6] has emerged and been recognized as a promising solu-
tion to the lack of health professionals in rural areas. Its core

idea is combining the cloud computing and machine learning
techniques for medical automation, such as the automated
diagnosis and analysis, which will reduce doctors’ workload
and free them up for more undiagnosed patients. Therefore,
for governments, the online medical prediagnosis scheme is
an opportunity to improve the healthcare environment in rural
areas.

Health service provider (HSP) is an essential component
in the online medical prediagnosis framework. As shown
in Fig. 1, the HSP is responsible for collecting a large
amount of historical medical data from clinics. Using dif-
ferent machine learning algorithms, the HSP can train a
prediagnostic model from these collected data. This model
can be used to predict healthcare users’ likelihood of con-
tracting a specific disease. Subsequently, the HSP outsources
the prediagnostic model to the cloud platform (CP) [7], [8],
which hosts the HSP’s model and offers a 24-hour online
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FIGURE 1. Framework of online medical prediagnosis.

prediagnosis service for rural areas. Based on this technique,
rural residents can access the expert healthcare service at
home (i.e., they use their smartphones to submit their physical
symptoms and obtain the prediagnostic result).

Privacy preservation is of paramount importance to the
online medical prediagnosis scheme as medical data are
deeply involved in sensitive information. Generally, privacy
issues can be divided into two categories based on two phases
in themachine learning: themodel training phase andmedical
prediagnosis phase. In the first phase, the HSP trains a pre-
diagnostic model ω from historical medical records, which
contain patients’ sensitive information [9], [10]. Our work
mainly focuses on privacy issues in second phase, where the
CP examines a healthcare user’s physical condition based on
user’s personal information. Concretely, in order to make the
prediagnosis service, the CP needs to calculate the medical
examination function MedExam(Ex, ω), where Ex is a health-
care user’s feature vector on her symptoms and ω is the
HSP’s prediagnostic model. However, the two inputs cannot
be revealed directly, because the feature vector Ex contains the
healthcare user’s sensitive personal data and the prediagnostic
model ω is the HSP’s private asset. To preserve their pri-
vacy, our paper aims at designing a privacy-preserving online
medical prediagnosis scheme, where the CP can calculate
MedExam(Ex, ω) but should not learn anything about the two
inputs Ex and ω.
To design this scheme, we apply the homomorphic encryp-

tion techniques [11] to protect these sensitive data. With the
technique, a specific linear algebraic manipulation can be
directly performed on the ciphertext. Based on this technique,
many existing works [12]–[16] have been proposed to solve
privacy issues in the online medical prediagnosis process.
For example, Bos et al. [12] used a fully homomorphic
cryptosystem to implement a prediagnosis scheme, which is
based on the logistic regression and the Cox proportional
hazard model. Particularly, we apply the BGN homomorphic
cryptosystem [17] to protect the confidentiality of the user’s
feature vector Ex and the HSP’s prediagnostic model ω.

Over the past years, several mathematical models have
been developed, studied, and used to perform the valu-
able prediagnosis in the healthcare, like SVM [18], Naïve
Bayes [19], decision tree [20], and logistic regression
(LR) [21], etc. However, the existing LR-based prediag-
nostic schemes [22], [23] cannot protect the confidentiality

of the HSP’s LR prediagnostic model. Therefore, our paper
focuses on the logistic regression, fine-tunes it as a medical
examination function, and then proposes a privacy-preserving
online medical prediagnosis scheme. Specifically, our pro-
posed scheme will preserve the healthcare user’s privacy and
the HSP’s confidentiality, simultaneously. The main contri-
butions of this paper are two-fold:
• Firstly, we propose a privacy-preserving online medical
prediagnosis scheme. In this scheme, to protect the pri-
vacy, the healthcare user and the HSP encrypt the feature
vector Ex and prediagnostic model ω, respectively, and
then submit them to the CP. Upon receiving these data,
the CP can directly perform the medical examination
function MedExam(·) on these encrypted data without
decryption. Comparedwith traditional schemes, our pro-
posed scheme not only protects the privacy of the feature
vector Ex, but also preserves the confidentiality of the
prediagnostic model ω.

• Secondly, the proposed POMP scheme can achieve a
lightweight medical prediagnostic service by exploiting
the preprocessing technique [24] and Bloom filter [25].
Furthermore, we also implement POMP over smart-
phone and computer,1 and measure the running time in
real environment. The experimental result demonstrates
that POMP can provide an efficient medical prediagno-
sis service.

The remainder of this paper is organized as follows: In
Section II, we introduce our system model, security require-
ments, and our design goals. In Section III, the logistic
regression, BGN cryptosystem, and Bloom filter are recalled
as the preliminaries. After that, we present our scheme in
Section IV, followed by its security analysis and performance
evaluation in Sections V and VI, respectively.We also discuss
the related work in Section VII. Finally, we draw our conclu-
sions in Section VIII.

II. MODELS AND DESIGN GOALS
In this section, we describe the system model, security
requirements, and identify our design goals.

A. SYSTEM MODEL
In our system model, we mainly focus on the logistic regres-
sion to design a privacy-preserving online medical pre-
diagnosis scheme for the cloud environment. Specifically,
the system contains three kinds of entities: health service
provider (HSP), healthcare users, and cloud platform (CP),
as shown in Fig. 2.
• Health Service Provider (HSP): We consider the HSP as
an authorized organization to access historical medical
data, who owns the logistic regression (LR) prediag-
nostic model ω. In order to provide a 24-hour online
service, the HSP also needs to outsource the model
to the CP. However, since the model ω is a private

1The application and source code can be downloaded from
https://www.dropbox.com/s/36evhtmvoex5zm6/AppCode.zip?dl=0
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FIGURE 2. System model for the online medical prediagnosis.

asset, the HSP encrypts it and sends the ciphertext to
the CP. Then, with this encrypted model, the CP diag-
noses the healthcare user according to his feature vector
Ex = 〈x1, x2, . . . , xl〉, where all entities are the answers
of the questionnaire Qlist , which contains l questions
{Q1,Q2, . . . ,Ql} inquiring users’ physical state. Each
question is two-choice, like ‘‘Do you have high blood
pressure or hypertension, yes or no?’’. In addition,
the HSP is also responsible for permitting legal users to
get the online medical prediagnosis service by the access
token distribution.

• Healthcare Users: Each healthcare user is equipped with
a smartphone, which can show the questionnaire Qlist
and communicate with the CP. At the beginning, the user
completes l questions in the Qlist , and the relevant
answers make up the feature vector Ex = 〈x1, x2, . . . , xl〉,
where xi ∈ {0, 1} is the answer of question Qi (xi =
1 means the answer is ‘‘yes’’, while xi = 0 means
the answer is ‘‘no’’). Since the feature vector contains
sensitive information, the user should encrypt it before
submitting it to the CP.

• Cloud Platform (CP): As the service agency of the HSP,
the CP uses the encrypted LR prediagnostic model to
evaluate whether the healthcare user has any illness.
Concretely, upon receiving the request for healthcare
prediagnosis, the CP performs the medical examination
function MedExam(·) on the two encrypted inputs (i.e.,
the ciphertext of the user’s feature vector Ex and the
HSP’s LR prediagnostic model ω) and then returns the
prediagnostic result to the user via a secure channel.

Moreover, we illustrate our POMP scheme’s workflow
in Fig. 2. At the beginning, the HSP outsources the encrypted
LR prediagnostic model to the CP and assigns the access
token to healthcare users. Then, the healthcare users request
the online prediagnosis service by submitting their encrypted
feature vector to the CP. Finally, without decryption, the CP
can perform the prediagnosis service upon the ciphertext and
return the result to the user via a secure channel.

B. SECURITY REQUIREMENTS
The confidentiality and privacy are significant for a prac-
tical online medical prediagnosis scheme. In our security
model, we consider all internal entities (HSP, healthcare

user, and CP) are honest-but-curious [26]–[29], i.e., they
would faithfully execute the operations in the protocol with-
out launching any active attacks, but perhaps try to analyze
receivedmessages to obtain the valuable information. In addi-
tion, there exists an external adversary in the security model,
who can eavesdrop on the communication channel to discover
some valuable data.
In our scheme, the valuable information includes the

healthcare user’s feature vector and the HSP’s LR prediag-
nostic model. To protect these data from the internal entities
and external adversary, we should ensure following security
requirements.

• Confidentiality of the healthcare user’s feature vector:
The feature vector contains amounts of user’s sensitive
information, which cannot be revealed to other internal
entities or external adversary.

• Confidentiality of the HSP’s LR prediagnostic model:
With historical medical data, the HSP uses machine
learning algorithms to train the LR prediagnostic model.
Since the model is the intellectual property of HSP,
it cannot be leaked or overheard by other internal enti-
ties or the external adversary.

Moreover, we assume that there is no collusion attack in
our scheme, i.e., neither the healthcare user nor the HSP can
collude with the CP to attack each other. Meanwhile, since
our work mainly focuses on the privacy and confidentiality
protection, other types of attack are also beyond the scope of
this paper.

C. DESIGN GOALS
In order to achieve the privacy-preserving medical prediag-
nosis service under the aforementioned system model and
security requirements, our proposed scheme should fully
guarantee the following two objectives:

• Security requirements should be guaranteed. As
described above, if the proposed scheme does not
consider the privacy of healthcare users, their highly
sensitive feature vector would be disclosed to the
CP or external adversary. In this case, the healthcare
user would be reluctant to use this service due to the
concern of privacy leakage. On the other hand, the HSP
is a profit organization and its intellectual property
(LR prediagnostic model) should be protected from
leakage. Therefore, the proposed POMP scheme should
guarantee the privacy of the healthcare user and the
confidentiality of the HSP, simultaneously.

• Computational and communicational efficiency should
be achieved. The healthcare user has limited resources
in terms of computation and communication. Further-
more, although the CP is a cloud server with abundant
resources, it is still challenging to guarantee its effi-
ciency when thousands of healthcare users request the
prediagnosis service at the same time. Therefore, it is
necessary to ensure the computational efficiency both on
the user- and CP-side.
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III. PRELIMINARIES
In this section, we review the logistic regression, BGN homo-
morphic cryptosystem, and Bloom filter, which will serve as
the basis of our proposed scheme.

A. LOGISTIC REGRESSION
The logistic regression is a popular tool for the binary clas-
sification, where the logistic regression (LR) classifier cate-
gorizes new coming feature vectors into two classes, such as
pass/fail, win/lose, or alive/dead. In our prediagnostic cases,
LR classifier divides new coming healthcare users into two
groups (illness/health) by the classifier function

Pr(y = 1|Ex) =
1

1+ e−(γ+Ex·Eβ)
, (1)

where Ex = 〈x1, x2, . . . , xl〉 is the healthcare user’s feature
vector, γ is the intercept, and Eβ = 〈β1, β2, . . . , βl〉 is the
vector of regression coefficients. For convenience, Equ. (1)
can also be fine-tuned into a linear function [10] by

ln
( Pr(y = 1|Ex)
1− Pr(y = 1|Ex)

)
= γ + Ex · Eβ. (2)

To decide whether the user contracts the disease, a threshold
θ should be set [30]. If γ +Ex · Eβ− θ > 0, the user is at a high
chance of contracting the disease; Otherwise, the user is at a
low risk.

Therefore, if we define the prediagnostic model ω =
{γ, Eβ, θ}, the fine-tuned LR classifier can be designed as the
following medical examination function [30]

MedExam(Ex, ω)= γ+Ex · Eβ−θ

= 〈1, x1, . . . , xl,−1〉〈γ, β1, . . . , βl, θ〉, (3)

which can be represented by the product of two vectors.
In this paper, we use this fine-tuned function to construct a
prediagnosis service, where the healthcare user is prediag-
nosed with an illness if MedExam(Ex, ω) ≥ 0, otherwise the
user is prediagnosed as a healthy one.

B. BONEH-GOH-NISSIM (BGN) CRYPTOSYSTEM
The BGN is a kind of homomorphic cryptosystem [17],
which allows some calculations on the ciphertext, like
addition or multiplication. Therefore, with this property,
the untrusted third party can perform some calculations
on the ciphertext without access to the sensitive information.
The BGN mainly contains three functions: key generation,
encryption, and decryption.

1) Key generation: Given the security parameter τ , a com-
posite bilinear pairing (N , g0,G,GT , e) can be created,
where N = pq and p, q are two τ -bit prime numbers,
g0 is a generator of group G with order N , and e is
bilinear mapping G × G→ GT . Set h = gq0, which is
a generator of the subgroup of G with order p. Finally,
we set the public key as pk = (N ,G,GT , e, g0, h) and
corresponding private key as sk = p.

2) Encryption: We assume the message space is a set
of integers {0, 1, . . . ,1} with 1 � q. To encrypt a

message µ from the set, we choose a random number
r ∈ ZN and compute the ciphertext C = E(µ, r) =
gµ0 h

r
∈ G.

3) Decryption: Given the ciphertext C = gµ0 h
r
∈ G,

the related message µ can be recovered by the private
key p, i.e., calculating Cp

= (gµ0 h
r )p = (gp0)

µ and
recovering µ by computing the discrete logarithm of
Cp to the base gp0. Since 0 6 µ 6 1, this discrete loga-
rithm can be solved by Pollard’s lambda algorithm [31]
with computational complexity O(

√
1).

In addition, the BGN supports following homomorphic
properties:
• Multiplication from G to GT : Given two ciphertexts
C1 = gµ1

0 hr1 and C2 = gµ2
0 hr2 ∈ G, the ciphertext

C ∈ GT of µ1µ2 can be computed by

C = e(C1,C2) = e(gµ1
0 hr1 , gµ2

0 hr2 )

= e(g0, g0)µ1µ2e(g0, h)µ1r2+µ2r1+qr1r2 (4)

• Addition in GT : Given two ciphertexts C1 =

e(g0, g0)µ1e(g0, h)r1 and C2 = e(g0, g0)µ2e(g0, h)r2 ∈
GT , we can calculate the cipher C ∈ GT of µ1 + µ2 by

C = C1C2

= e(g0, g0)µ1e(g0, h)r1e(g0, g0)µ2e(g0, h)r2

= e(g0, g0)µ1+µ2e(g0, h)r1+r2 (5)

With the aforementioned two properties, a secure vector prod-
uct [32] can be designed, i.e., given two encrypted vectors
〈C1,C2, . . . ,Ct 〉 and 〈C̄1, C̄2, . . . , C̄t 〉, where Ci = gµi0 h

ri

and C̄i = gµ̄i0 h
r̄i for i = 1, 2., . . . , t , the secure product can

be calculated by

〈C1,C2, . . . ,Ct 〉 × 〈C̄1, C̄2, . . . , C̄t 〉

=

t∏
i=1

e(Ci, C̄i) =
t∏
i=1

e(gµi0 h
ri , gµ̄i0 h

r̄i )

= e(g0, g0)µ1µ̄1+µ2µ̄2+...+µt µ̄t e(g0, h)r1 r̄1+r2 r̄2+...+rt r̄t

(6)

C. BLOOM FILTER
Bloom filter BF(m, k) [33] is an efficient data structure for
testing whether an element is a member of a set, where
m is the bit-length of the filter and k is the number of
hash function. Particularly, k hash functions are defined as
{H1(·),H2(·), . . . ,Hk (·)}, each of which is defined as a map-
ping Hi(·) : {0, 1}∗→ {0, 1, . . . ,m− 1}.
Bloom filter contains two functions: element addition and

membership query. noitemsep
1) Element addition: In order to add an element α

into the Bloom filter, we compute k array positions
{H1(α),H2(α), . . . ,Hk (α)} and then set the bits at all
these positions to 1.

2) Membership query: To query whether an element α is
a member of BF(m, k), we need to check the relative
k positions {H1(·),H2(·), . . . ,Hk (·)}. If any one bit of
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these positions is 0, the element α definitely not in
BF(m, k). However, if all positions are 1, there are two
distinct cases: 1) the element is contained in BF(m, k);
2) these position have been set to 1 during the insertion
of other elements, which is considered as the false
positive [25] in the membership query.

Particularly, if n elements have been added into BF(m, k),
the false positive probability P can be calculated by

P =
(
1− (1−

1
m
)kn
)k
≈ (1− e−kn/m)k , (7)

which is minimized when k = (m/n) · ln 2 [25]. The false
positive can be controlled by choosing suitable parameters of
Bloom filter, as shown in Fig. 3.

FIGURE 3. False positive varying with the number of inserted element
and the number of hash function.

IV. OUR PROPOSED SCHEME
In this section, we propose a privacy-preserving online
medical prediagnosis scheme, named POMP, for the cloud
environment, which mainly contains three phases: system
initialization, feature vector submission, and medical pre-
diagnosis. In the first phase, the HSP generates the public
parameters for the whole system, securely outsources the
LR prediagnostic model to the CP, and authorizes healthcare
users by the access token. In the second phase, the healthcare
user encrypts his feature vector and sends it to the CP to
request the online prediagnosis service. Finally, in the third
phase, the CP performs the prediagnosis service on encrypted
data and returns the diagnostic result to the user in a secure
manner.

A. SYSTEM INITIALIZATION
In this phase, the HSP initializes the whole system by the
following three steps: 1) the HSP generates public parameters
and publishes them to other entities, 2) the HSP outsources
the encrypted LR prediagnostic model to the CP, and 3) the
HSP authorizes registered healthcare users by assigning the
access token to them.
Step 1 (Generating Public Parameters): The HSP first

selects the security parameter τ to generate the composite
bilinear parameters (G,GT ,N , g0, e), where G,GT are two
group of composite order N = pq, g0 is a generator of

group G, and e is computable mapping G × G → GT .
The group G contains two subgroups Gq and Gp, which are
generated by two generators g = gp0 and h = gq0, respectively.
Then, the HSP calculates ḡ = ghr , where r is a random
number selected from ZN . Finally, the HSP publishes public
parameters (N ,G,GT , e, ḡ, h) to other entities and keeps
other parameters (g0, g, r, p, q) secret.
Step 2 (Outsourcing Encrypted LR Prediagnostic Model):

The original parameters of prediagnostic model are either
positive/negative decimals or zeros [30]. In order to convert
them into non-negative integers in ZN , the HSP processes
these parameters by function

f (x) = b1000 ∗ xc mod N , (8)

i.e., expanding each parameter 1000 times and removing the
decimal part. For example, a real parameter 0.0053 in [21] is
converted to the integer 5 by f (x). In here, we assume that all
parameters of prediagnostic model ω = {γ, Eβ, θ} have been
converted by f (x).

To ensure the confidentiality, the HSP should encrypt these
parameters γ, Eβ = 〈β1, β2, . . . , βl〉, θ by the BGN cryp-
tosystem

E0 = gγ hr0 ,

E1 = gβ1hr1 , E2 = gβ2hr2 , · · ·El = gβlhrl ,

El+1 = vgθhrl+1 , (9)

where r0, r1, . . . , rl+1 are random numbers chosen from ZN .
These encrypted parameters are denoted by
� = {E0,E1, . . . ,El+1}.

In addition, to ensure prediagnosis service can be per-
formed on ciphertext, the HSP also needs to generate a Bloom
filter BF(m, k) containing all diseased vectors’ data. It is
created as follows:

1) Since the questionnaire Qlist contains l questions and
each question is two-choice, there are totally 2l possible
feature vectors, which compose the vector space S.

2) With the logistic regression, the HSP divides the space
S into two categories: the diseased vector space Sd and
the healthy vector space Sh. In detail, for each instance
Ex ∈ S, if MedExam(Ex, ω) ≥ 0, Ex is classified into Sd ;
otherwise Ex is categorized into Sh.

3) For each feature vector Ex in the diseased space Sd ,
the HSP calculates e(g, g)MedExam(Ex,ω) and adds it into
the BF(m, k).

Finally, the HSP outsources his prediagnosis service to
the CP by providing encrypted parameters � and the Bloom
filter BF(m, k). With these data, the CP can construct a
privacy-preserving online medical prediagnosis service.
Step 3 (Authorizing Registered User): To give healthcare

users permission to the online prediagnosis service, the HSP
assigns the access token {A0,A1, . . . ,Al+1} to them. Each
component of the access token is generated by

Ai = hri (i = 0, 1, . . . , l + 1), (10)
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where r0, r1, . . . , rl+1 are the same random numbers used in
Eq. (9).

B. FEATURE VECTOR SUBMISSION
The healthcare user completes the l questions in Qlist and
generates the feature vector Ex = 〈x1, x2, . . . , xl〉, which con-
tains sensitive data and cannot be disclosed to other entities.
Therefore, to protect the privacy, the healthcare user encrypts
the feature vector before submitting it to the CP. Besides,
the healthcare user utilizes the access token to compute an
assistant dataD, which ensures the correctness of the medical
prediagnosis.

Particularly, the healthcare user encrypts each element in
the feature vector Ex = 〈x1, x2, . . . , xl〉 by

Xi = ḡxihr̄i (i = 1, 2, . . . , l), (11)

where r̄1, r̄2, . . . , r̄l are random numbers chosen from ZN .
Then, the user utilizes these ciphertexts to compute the assis-
tant data by

D = e(ḡ,A0) ·
l∏
i=1

e(Xi,Ai) · e(ḡ−1,Al+1), (12)

where A0,A1, . . . ,Al+1 are elements of the access token.
Finally, the user requests the online prediagnosis service by
submitting the encrypted feature vector EX = 〈X1,X2, . . . ,Xl〉
and the assistant data D to the CP.

C. MEDICAL PREDIAGNOSIS
In this phase, the CP evaluates healthcare users’ physical
state by calculating the medical examination function on the
ciphertexts. Then, the CP returns the prediagnostic result
to healthcare users via the secure channel. The detail is
described as follows:

1) Upon receiving the healthcare request from a health-
care user, the CP computes the medical examina-
tion function MedExam(·) with the two inputs (the
encrypted feature vector EX and LR model �) by

MedExam( EX, �)

= e(ḡ,E0) ·
l∏
i=1

e(Xi,Ei) · e(ḡ−1,El+1). (13)

2) Then, with the assistant data D and the Bloom filter
BF(m, k), the CP can decide whether the healthcare
user contracts a disease by computing

MedExam( EX, �)
D

. (14)

If MedExam( EX,�)
D ∈ BF(m, k), the CP prediagnoses the

user with the illness, otherwise the user is prediagnosed
as a healthy person. Finally, via the secure channel,
the CP returns the result to the user.

Correctness: There are two types of healthcare users,
i.e., the user who is not well and the healthy user. To show

the correctness of prediagnosis service, we illustrate the pre-
diagnosis process of two typical samples, respectively.

• Sample 1: The first sample is a diseased user, whose
feature vector Exd belongs to the diseased vector space
Sd . Therefore, the CP should prediagnose him with the
illness. The prediagnosis process is described as fol-
lows: After receiving the encrypted feature vector EX and
assistant data D, the CP performs the prediagnosis by
computing

MedExam( EX, �)
D

=
e(ḡ,E0) ·

∏l
i=1 e(Xi,Ei) · e(ḡ

−1,El+1)
D

E0=gγ hr0 , Ei=gβihri (i=1,2...,l), El+1=gθh
rl+1

−−−−−−−−−−−−−−−−−−−−−−−−−−−→

=
e(ḡ, gγ hr0 ) ·

∏l
i=1 e(Xi, g

βihri ) · e(ḡ−1, gθhrl+1 )
D

D=e(ḡ,A0)·
∏l
i=1 e(Xi,Ai)·e(ḡ

−1,Al+1)
(
Ai=hri (i=0,1,...,l+1)

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

=
e(ḡ, gγ hr0 ) ·

∏l
i=1 e(Xi, g

βihri ) · e(ḡ−1, gθhrl+1 )

e(ḡ, hr0 ) ·
∏l

i=1 e(Xi, hri ) · e(ḡ−1, h
rl+1 )

= e(ḡ, gγ ) ·
l∏
i=1

e(Xi, gβi ) · e(ḡ−1, gθ )

Xi=ḡxihr̄i , ḡ=ghr , e(h,g)=1
−−−−−−−−−−−−−−−−→

= e(g, gγ ) ·
l∏
i=1

e(gxi , gβi ) · e(g−1, gθ )

= e(g, g)γ+
∑l

i=1 xiβi−θ = e(g, g)MedExam(Exd ,ω)

Since this user’s feature vector Exd belongs to the dis-
eased space Sd and e(g, g)MedExam(Exd ,ω) has been added
into BF(m, k), the CP diagnoses this user with the
illness.

• Sample 2: The second sample is a healthy user, whose
feature vector Exh belongs to the healthy vector space
Sh. Therefore, the CP should prediagnose this user as
a healthy person. The prediagnosis process is described
as follows: the CP also calculates the MedExam( EX,�)

D and
then checks whether it has been contained in BF(m, k).
The second sample’s feature vector Exh belongs to the
healthy vector space Sh and e(g, g)MedExam(Exh,ω) has not
been included into BF(m, k). Therefore, the CP should
return a healthy result to the healthcare user. However,
due to the false positive of Bloom filter, the CP may
misdiagnose the healthy user with the false positive P .
To ensure the prediagnostic correctness, we can control
the false positive by choosing suitable parametersm and
k of Bloom filter. According to [34], given the expected
false positive P and the maximum number of inserted
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element n, the bit-length of Bloom filter m should be

m = −
n · lnP
(ln 2)2

. (15)

For example, when P = 10−9 and n = 220,
we can calculate the bit-length m of Bloom filter is
45, 227, 980 bit≈ 5.39 MB. In this situation, we also
measure the false positive varying with the number of
hash function k , and the number of inserted element n,
as shown in Fig. 3. When the number k of hash func-
tion equals 30, the false positive can be controlled less
than 10−9. Therefore, it is possible to control the false
positive P to ensure the correctness of the prediagnosis
service.

V. SECURITY ANALYSIS
In this section, we analyze the security properties of the
proposed POMP scheme. In particular, following the afore-
mentioned security requirements, our analysis will focus on
how the proposed scheme can achieve the confidentiality of
LR parameters and feature vector.

A. CONFIDENTIALITY OF HSP’S LR
PREDIAGNOSTIC MODEL
In order to preserve the confidentiality, the HSP encrypts all
parameters of the LR prediagnostic model before outsourcing
them to the CP. In the following analysis, we illustrate that
HSP’s confidential data can be preserved from the external
adversary, healthcare user, and CP.
• HSP’s confidential data is preserved from the external
adversary. In the proposed scheme, LR parameters ω =
{γ, β1, . . . , βl, θ} owned by the HSP are encrypted into
the ciphertext � = {E0,E1, . . . ,El,El+1} by the BGN
cryptosystem:

E0 = gγ hr0 ,

E1 = gβ1hr1 , . . . ,El = gβlhrl ,

El+1 = gθhrl+1 . (16)

Since the BGN is semantic secure against the chosen
plaintext attack, the parameters {γ, β1, . . . , βl, θ} are
also semantic secure and privacy-preserving. Therefore,
even thought the external adversary eavesdrops these
ciphertexts {E0,E1, . . . ,El,El+1}, he still cannot iden-
tify the corresponding contents.

• HSP’s confidential data is protected from the health-
care user. In our system model, the healthcare user is
considered as an honest-but-curious user, i.e., he would
not actively attack the HSP but try to infer its confi-
dential information from the received data. However,
the healthcare user only obtains the access token from
the HSP, which does not involve any information on
LR parameters. Therefore, the HSP’s confidential data
is also protected from the healthcare user.

• HSP’s confidential data is guarded from the CP. In the
proposed scheme, the HSP outsources the encrypted LR

model � to the CP. As an honest-but-curious entity,
the CP attempts to infer HSP’s confidential information
from the received data. In our security model, we assume
that there is no collusion attack. However, to show the
security, we demonstrate that POMP can still protect
the HSP’s confidential data from the CP even when he
colludes with the healthcare user. For instance, in order
to recover γ − θ , the CP asks the healthcare user to
generate a zero vector Ex = 〈0, 0, . . . , 0〉 and submit the
encrypted zero vectors EX = 〈X1,X2, . . . ,Xl〉 where

X1 = hr̄1 ,X2 = hr̄2 , . . . ,Xl = hr̄l . (17)

Meanwhile, the healthcare user generates and submits
the assistant data D to the CP, where

D = e(h, h)rr0+
∑l

i=1 r̄iri−rrl+1 . (18)

Upon receiving EX andD, the CP can calculate the exam-
ination function MedExam( EX, �) and then compute

MedExam( EX, �)
D

= e(g, g)γ−θ . (19)

However, since the element g is the secret data of the
HSP, the CP cannot know the base e(g, g) and also
cannot retrieve γ − θ from the result. Therefore, even
though cooperating with the healthcare user, the CP still
cannot violate the HSP’s confidential data.

B. CONFIDENTIALITY OF HEALTHCARE USER’S
FEATURE VECTOR
The healthcare user also uses the BGN cryptosystem to
preserve the feature vector Ex = 〈x1, x2, . . . , xl〉 from the
CP, external adversary, and HSP. Particularly, healthcare user
encrypts the feature vector by

Xi = ḡxihr̄i (i = 1, 2, . . . , l). (20)

Then, the user requests the online prediagnosis service
by submitting the encrypted feature vector to the CP.
Particularly, for the CP and external adversary, they can
receive or eavesdrop the encrypted feature vector, but cannot
recover the plaintext from these ciphertexts due to the lack
of the private key p. For the HSP, he holds the private
key p, but cannot get the encrypted feature vector. Therefore,
the HSP also cannot violate the user’s privacy. In summary,
the healthcare user’s privacy is protected from the CP, exter-
nal adversary, and HSP.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the pro-
posed POMP scheme in terms of the computational costs and
communication overheads. Particularly, we first theoretically
analyze its computational and communication complexity,
and then perform an experimental evaluation in the real
environment.
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A. THEORETICAL ANALYSIS
We theoretically analyze the computation complexity of the
HSP, healthcare user, and CP, respectively, and then discuss
the communication overheads between the healthcare user
and CP.

1) COMPUTATIONAL COSTS
The computational cost of our proposed POMP scheme is
mainly affected by the following five time-consuming oper-
ations: the exponentiation in G, the multiplication in G,
the multiplication in GT , the pairing operation, and the hash
function, denoted by Ce, Cm1, Cm2, Cp and Ch, respectively.
Based on these five operations, we analyze each entity’s
computational complexity.
• Computational complexity of the HSP: In the system ini-
tialization, the HSP outsources the encrypted LR param-
eters and the Bloom filter to the CP, and assigns the
access token to the healthcare user. Particularly, the HSP
takes 2(l + 2) ∗ Ce + (l + 2) ∗ Cm1 to encrypt the LR
parameters, 2l ∗ (Ce + Cp) to initialize the Bloom filter,
and (l + 2) ∗ Ce to calculate the access token. These
calculations can be computed offline and will not affect
the daily request/feedback.

• Computational complexity of the healthcare user: The
healthcare user launches the prediagnosis service by
submitting the encrypted feature vector and the assistant
data to the CP. Especially, the user takes 2l ∗Ce+ l ∗Cm1
to encrypt his feature vector and (l+2)∗Cp+(l+1)∗Cm2
to compute the assistant data.

• Computational complexity of the CP: The CP performs
the prediagnosis service on the ciphertext. Specifically,
the CP requires (l + 2) ∗Cp + (l + 2) ∗Cm2 to compute
the prediagnosis function and k ∗Ch for the membership
query in Bloom filter.

2) COMMUNICATION OVERHEADS
The communications of the proposed POMP scheme can be
divided into three parts: HSP-to-CP, HSP-to-user, and user-
to-CP. The first two parts only happen once in the system ini-
tialization phase, whichwill not influence the communication
efficiency of the whole system.

Therefore, we mainly focus on the user-to-CP commu-
nication, where the healthcare user generates and sends
their request to the CP. The format of this request is
X1||X2|| . . . ||Xl ||D, where ‘‘||’’ is the concatenation opera-
tion. Particularly, if we assume the length of BGN cipher is
2048-bit, the whole size of data should be (l+1)∗2, 048 bits.
Obviously, this communication overhead is linear with the
number of questions in the questionnaire. Therefore, the pro-
posed POMP scheme has an accaptable communication and
is suitable for the real environment.

B. EXPERIMENTAL EVALUATION
In our experiment, we implemented the proposed POMP
scheme using the Java and the JPBC library [24], and then
measured the running time in real environment.

FIGURE 4. Android application to simulate healthcare user.

As shown in Fig. 4, we developed an Android application
for the healthcare user, which runs on a smartphone with
2.30 GHz processor, 4 GB memory, and Android 7.0 system.
We also developed two applications for the HSP and CP,
which are deployed on a computer with the Intel i5-2450M,
2.50 GHz processor, and 8 GB memory.

1) EXPERIMENTAL EVALUATION OF THE HSP
In our scheme, the HSP is responsible for initializing the
whole system by generating the Bloom filter, the encrypted
LR prediagnostic model and the access token. Particularly,
in the real environment, the initial time of Bloom filter is
recorded in TABLE 1. It shows that the computational cost
varies with the number of questions l from 6 to 20 with the
increment of 2. In addition, we also evaluate the running time
of the LR parameters encryption and the access token gener-
ation, which are depicted in Fig. 5. Obviously, both of their
running time are linear with l and larger than 5, 000 ms when
l = 20. However, these computational costs are acceptable,
since these operations are computed only once and will not
affect the efficiency of the online prediagnosis service.

TABLE 1. HSP’s running time for initializing Bloom filter.

2) EXPERIMENTAL EVALUATION OF THE HEALTHCARE USER
The healthcare user utilizes the pairing operation to compute
the assistant data. However, since the pairing operation is
time-consuming, it is unsuitable for being deployed on the
smartphone. To solve this problem, we use the preprocessing
technique [24] to accelerate the calculation speed of gen-
erating assistant data. Its core idea is to pre-compute and
store some values that will be used several times in the
future. Particularly, the healthcare user calculates and stores
e(ḡ,Ai) (for i = 0, 1, . . . , l + 1) and e(h,Ai) (for i =
1, 2, . . . , l) in advance. Then, when computing the assistant
data, the healthcare user reads these data directly from the
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FIGURE 5. HSP’s running time of the LR parameters encryption and
access token generation.

storage and calculates

D = e(ḡ,A0) ·
l∏
i=1

(
e(ḡ,Ai)xie(h,Ai)r̄i

)
· e(ḡ,Al+1)−1. (21)

This will accelerate the calculation of healthcare user by
reducing the complexity to 2l ∗Ce+ (2l+1)∗Cm2. As shown
in Fig. 6, we measure the running time of the accelerated ver-
sion andmeanwhile compare it with the original, respectively.
The result shows the preprocessing technique dramatically
reduces the complexity and makes our scheme efficient for
the smartphone.

FIGURE 6. Healthcare user’s running time of the original and accelerated
computation.

3) EXPERIMENTAL EVALUATION OF THE CP
The CP’s calculation can also be accelerated by the prepro-
cessing technique, i.e., computing and storing e(ḡ,E0) and
e(ḡ,El+1)−1 in advance, and then reading them directly when

FIGURE 7. CP’s running time of the original and accelerated computation.

calculating the

MedExam( EX, �) = e(ḡ,E0) ·
l∏
i=1

e(Xi,Ei) · e(ḡ,El+1)−1.

(22)

By this method, the whole complexity of the CP can be
reduced to l ∗Cp+ (l+2)∗Cm2+k ∗Ch. As shown in Fig. 7,
the running time of original and accelerated CP rises steadily
with the growth of l. Both of their running time are larger
than 3, 000 ms when l grows to 20. However, since the CP is
a powerful cloud server, it is acceptable for it to address this
computational burden.

In summary, our analyses prove that the proposed scheme
is efficient in terms of computational costs and communica-
tional overheads, which are suitable for the real environment.

VII. RELATED WORK
Existing works on the privacy-preserving medical pre-
diagnosis can be generally divided into two categories: the
privacy-preserving training process on the historical medical
data and the privacy-preserving medical prediagnosis to the
new coming healthcare user. The aim of the first category is to
privately train a prediagnostic model upon protected medical
records. However, our work mainly focuses on the second
category, which protects the healthcare user’s privacy and
HSP’s confidentiality in the prediagnosis process.

A. PRIVACY-PRESERVING TRAINING PROCESS ON THE
HISTORICAL MEDICAL DATA
In the training process, the machine learning algorithms
directly operate on the plaintext of historical medical records,
which would disclose patients’ sensitive data. To solve this
problem, many methods have been proposed to preserve the
privacy in this process.

The randomization is a prospective tool to guard the pri-
vacy in the training process. Several schemes [35]–[37] pre-
served the medical data by the random rotation perturbation,
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random matrix, or random noise [38]. These schemes can
be directly performed on the randomized data. Subse-
quently, the correct trained model can be recovered by the
de-randomization process.

The cryptographic method is another useful tool to solve
this problem. For instance, some schemes [39]–[41] ensured
the training algorithms can be performed upon encrypted
medical records. Based on these works, Lauter et al. [42]
presented privacy-preserving genomic algorithms over the
ciphertext, which was encrypted by the fully homomorphic
encryption.

B. PRIVACY-PRESERVING MEDICAL PREDIAGNOSIS TO
THE HEALTHCARE USER
In the prediagnosis service, a healthcare user submits their
feature vector, which contains their physical information.
To preserve the healthcare user’s privacy, many schemes have
been proposed recently.

In 2014, using the fully homomorphic encryption,
Bos et al. [12] implemented a cloud server for performing
private prediagnosis service upon the encrypted medical data.
In their setting, the patient’s medical data can be well pro-
tected by a lattice-based homomorphic cryptosystem [43].
However, in Bos et al.’s scheme, the confidentiality of pre-
diagnostic model is ignored, i.e., the model is considered
as the public information known by everyone (including
patients). Therefore, Bos et al.’s scheme only achieves a
privacy-preserving prediagnosis in a weaker security setting.

Bost et al. [13] achieved a high-level security, i.e., both
the confidentiality of prediagnostic model and the privacy
of feature vector are preserved. Particularly, the prediagnos-
tic model is offered by a service provider, while the fea-
ture vector is provided by the healthcare user. Both parties
need to keep their data private. To achieve this objective,
Bost et al. [13] used the Paillier cryptosystem [44] to
design three major privacy-preserving classifiers (hyper-
plane decision, Naïve Bayes, and decision trees) as medical
examination function. Subsequently, in order to improve the
efficiency,Wu et al. [45] employed a novel conditional oblivi-
ous transfer protocol to design an efficient privacy-preserving
classifier. Jia et al. [46] applied the oblivious evaluation
of multivariate polynomials [47] and the oblivious trans-
fer protocol to achieve a privacy-preserving SVM classifier.
Without using any time-consuming homomorphic encryp-
tions, Jia et al.’s scheme achieved the efficiency in terms of
communication and computation. Recently, Zhu et al. [15]
exploited the lightweight multiparty random masking and
polynomial aggregation techniques to design a medical pre-
diagnosis framework, which is based on the nonlinear kernel
SVM. In Zhu et al.’s scheme, both the privacy of user’s
feature vector and the confidentiality of SVM classifier are
protected, and meanwhile it has lower overhead than [48] in
terms of computation and communication.

Different from all of the aforementioned works, our pro-
posed POMP scheme achieves a privacy-preserving predi-
agnosis service by using the logistic regression, which can

be widely applied in the medical examination. In particular,
POMP not only preserves the privacy of healthcare user’s
feature vector, but also protects the confidentiality of HSP’s
prediagnosis mode.

VIII. CONCLUSIONS
In this paper, we have proposed an efficient and
privacy-preserving online medical prediagnosis scheme for
cloud environment by the BGN homomorphic cryptosystem.
In our scheme, the online prediagnosis service can directly be
performed on the ciphertext. Compared with the traditional
medical prediagnosis based on the LR classifier, our scheme
can achieve a high-level privacy setting, which protects the
privacy of personal feature vector and sensitive LR parame-
ters. To improve the efficiency, we utilized the preprocessing
technique and the Bloom filter to accelerate the prediagnosis
process. Then, we carried out the security analysis to demon-
strate the security strength and privacy-preserving ability of
the proposed scheme. Finally, the performance evaluation
in real environment also showed our scheme’s efficiency in
terms of the computational and communication burden.
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